1,882 research outputs found

    A Game-Theoretic Approach to Energy-Efficient Resource Allocation in Device-to-Device Underlay Communications

    Full text link
    Despite the numerous benefits brought by Device-to-Device (D2D) communications, the introduction of D2D into cellular networks poses many new challenges in the resource allocation design due to the co-channel interference caused by spectrum reuse and limited battery life of User Equipments (UEs). Most of the previous studies mainly focus on how to maximize the Spectral Efficiency (SE) and ignore the energy consumption of UEs. In this paper, we study how to maximize each UE's Energy Efficiency (EE) in an interference-limited environment subject to its specific Quality of Service (QoS) and maximum transmission power constraints. We model the resource allocation problem as a noncooperative game, in which each player is self-interested and wants to maximize its own EE. A distributed interference-aware energy-efficient resource allocation algorithm is proposed by exploiting the properties of the nonlinear fractional programming. We prove that the optimum solution obtained by the proposed algorithm is the Nash equilibrium of the noncooperative game. We also analyze the tradeoff between EE and SE and derive closed-form expressions for EE and SE gaps.Comment: submitted to IET Communications. arXiv admin note: substantial text overlap with arXiv:1405.1963, arXiv:1407.155

    Low-Density Hybrid-Check Coded Superposition Mapping and its Application in OFDM and MIMO

    Get PDF
    Since Shannon’s landmark paper, many approaches have been proposed to achieve the channel capacity. In the low SNR regime, the problem has almost been solved by capacity achieving channel codes. The research on coded modulation in the high SNR regime is still under development. Among many methods in accomplishing this goal, superposition mapping is an elegant way as it does not require extra shaping to generate a Gaussian-like distributed signal. Superposition mapping has been shown to offer very close to capacity performance for the AWGN channel by combining with an irregular channel code. The aim of this thesis is to search for a code which provides stable performance for moderate sequence length and sufficient number of iterations, which is more suitable for implementation. Concerning channel coding for superposition mapping, a generalized code design has recently been proposed. The so-called low-density hybrid-check (LDHC) coding intends to contrive coding and modulation in a joint way. The LDHC coding is constructed by integrating modulation into the Tanner graph. Thus, the complete code can be obtained by taking the effects of all the components into account. In this thesis, the LDHC code design is extended to OFDM and MIMO. For OFDM, the bit loading can be realized in the graph. In case of MIMO with spatial multiplexing, the code is extended to the spatial domain. In both cases, a suitable system structure will be proposed in this thesis. It will also be shown how this novel code design improves the system performance

    Concrete-encased steel columns confined with large rupture strain FRP composites: axial compression tests

    Get PDF
    Fibre Reinforced (FRP)-confined concrete-encased steel composite columns (FCSCs) are an emerging form of hybrid columns. The idea of a combined use of FRP-confined concrete and an encased steel section not only offers a durable and ductile structural form for new construction, but also can be practiced as an efficient method to retrofit/strengthen deteriorated steel columns. This paper presents a series of axial compression tests on concrete-encased steel columns confined with Large Rupture Strain (LRS) FRP composites, namely, Polyethylene Terephthalate (PET) FRP composites. A total of 12 circular specimans, including 6 FCSCs and 6 FRP-confined concrete circular columns (FCCCs) were tested, with the main test variables being the thickness of the FRP tube. The test results shoed that FCSCs with PET FRP possessed excellent performance in terms of both axial strength and ductility
    • …
    corecore